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Abstract

A model describing the roles of bound and unbound vacancies is proposed in order to predict defect de-

cay and short-range-order kinetics of quenched binary alloys during linear heating experiments. This is

an alternative treatment of a previous approach. The model has been applied to the differential scanning

calorimetry (DSC) curves of Cu–5 at.% Zn quenched from different temperatures. An expression to

calculate the activation energy for migration of solute-vacancy complexes was also developed which

make use of DSC trace data. A value of 89.12±0.32 kJ mol–1 was obtained for the above alloy. The rela-

tive contribution of bound and unbound vacancies to partition of effective activation energy corre-

sponding to the ordering process as influenced by quenching temperature was also assessed.

Keywords: binary alloy, non-isothermal kinetics, solute-vacancy complexes

Introduction

The different features of short-range-order (SRO) in f.c.c. solid solutions have been

profusely investigated for a long time by diffuse scattering of X-rays [1–6], by

small-angle X-ray scattering [7], by electron microscopy and electron diffraction

[8–12], by determination of elastic and plastic properties [13–15] and strengthening

and fatigue properties [16–21], as well as by electrical resistivity [22–25] and thermal

analysis [13, 14, 18, 26–31].

In contrast to usual experiments on SRO kinetics after quenching from rather

high temperatures, some experiments are interested in the adjustment of the new

equilibrium state of SRO established after small and sudden temperature changes

[32–36] and others are now concerned with the influence of cold work [37–40]. How-

ever, quenching experiments still provides information about how excess vacancies

frozen during the quench can affect the alloy ordering kinetics [41–45]. For instance,
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differential scanning calorimetry (DSC) of thermally disordered alloys reveals that

two short-range-ordering processes generally take place in two stages, irrespective of

the alloy system: stage-1 ordering at low temperatures is associated with the migra-

tion of excess vacancies, and stage-2 ordering at higher temperatures is due to the mi-

gration of equilibrium vacancies. The features displayed by the DSC traces have been

explained quantitatively [43], predicting the relative importance of each stage and

hence information was gained on the ordering process itself and vacancy behaviour.

Although one sees that while solid solution alloy systems, exhibiting SRO are

being rather intensively investigated [46], there is very scarse description of the role

of solute-vacancy complexes [47], which are determinant in explaining important

features of several metallurgical processes [48–52]. There is then a need to examine

the importance of such complexes in the ordering process, to the end of giving ac-

count of the observed behavior of the differential scanning calorimetry traces dis-

played after specific experiments, in which their presence can be evidenced.

An early work was published [53] in which the kinetics of non-isothermal

short-range-order return was described by equations in which the effective activation en-

ergy of the overall process, together with the activation energy for bound vacancies was

adjusted to a modified first order kinetic law. In the present paper, effective activation en-

ergies were calculated separately and hence the kinetic of the SRO reaction; computing

previously the average activation energy for migration of bound vacancies by means of

an expression considering the contribution of such complexes to the above process.

Chiefly, the present work a) designs experiments which characterize sol-

ute-vacancy complexes in a one stage ordering process, b) develop a model to assess

activation energy for migration of these complexes from DSC data, c) discloses a

model that predicts the return of unbound and bound vacancies to equilibrium, de-

scribing also the kinetics of reordering, d) tests its validity for Cu–5 at.% Zn, and e)

performs a parametric study of the initial total defect concentration in order to estab-

lish its influence on the calculated DSC profiles.

Contribution of solute-vacancy complexes to a non-isothermal short-range-ordering
(SRO) kinetic process

We are interested in this section in evaluating the relative concentration of sol-

ute-vacancy complexes after quenching to room temperature, where the same ordering

condition as that at Tz (the actual freezing temperature) prevails, which in turn is the same

existing at Ti, the inital temperature of the non-isothermal trace. After transients take

place, were the unbound and bound vacancies redistribute at the peak onset temperature

Te, the total amount of defects still remains the same than those at Tz and hence at the

inilial peak temperature Ti. Then, transient effects occur in the temperature interval

∆T=Te–Ti (these temperatures are illustrated in Fig. 1). Also, it is the aim of the section to

know the contribution of this defect type at Tp at which the reaction proceeds at its maxi-

mum rate. At Tf, the final trace temperature, equilibrium degree of order is reached and,

as total vacancy concentration is negligible at this temperature compared with its value

after quenching, it is then expected that solute-vacancy complexes are, too. Besides it is
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worth pointing out that during quenching, vacancies can migrate because the cooling rate

is finite in practical experiments. Above Tz, the reactions between the defects are consid-

ered to be in the thermal dynamical equilibrium because they are fast enough to maintain

it between them during quenching from temperature Tq, as profusely reported [54–58].

Special interest is given to the determination of defect decay kinetics, as well as, to the ef-

fective non-isothermal short-range-ordering kinetics.

Initial defects concentration

In a one stage non-isothermal ordering process it was determined from the analysis of

the DSC trace that the initial concentration of vacancies, as it was reported in a previ-

ous author’s paper, [45] is given by
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where E is the experimental effective activation energy measured at peak temperature, φr

is the heating rate, νot is now the specific effective jump frequency when unbound and

bound vacancies are present, that is when ct=cu+cb, being cu an cb the unbound and bound

vacancy concentration respectively, Tp is peak temperature and R the gas constant.

In Eq. (1), ct(Tz) represents the total concentration of defects at actual freezing

temperature which participate in the thermal event. Also, as it will be infered latter

on, νot=νom, being νom the attempt frequency either for unbound or bound vacancies.

Now for moderate diluted alloys, as we will be concerned in the present work [59]:
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Fig. 1 DSC curves for Cu–5 at.% Zn quenched from the indicated temperatures.
φr=0.33 K s–1



where Z is the coordination number, xt is the solute concentration and B is the sol-

ute-vacancy binding energy. Hereby:
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As dynamical equilibrium exists during quenching, the concentrations cb(Tz)

and cu(Tz) at the actual freezing temperature, can be readily calculated from:

cb(Tz)=ct(Tz)Ψb(Tz) (5)

and

cu(Tz)=ct(Tz)(1–Ψb(Tz)) (6)

A calculated freezing temperature Tz

' can be estimated from [43]:
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where τ0=10–6 s [43] and φq is the cooling rate. It should be pointed out that the more

mobile unbound vacancies with migration energy Em determine ′Tz . The actual freez-

ing temperature Tz= ′Tz as long as Tq> ′Tz , while if Tq< ′Tz then Tz=Tq , as will be illus-

trated latter in Fig. 2.
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Fig. 2 Quenching (Tq) and calculated ( ′Tz)freezing temperatures as a function of quench
rate. The actual freezing temperature Tz= ′Tz for Tq> ′Tz while Tz=Tq for Tq< ′Tz



The effective migration activation energy

The effective migration activation energy measured during a DSC run by means of

Kissinger method [60], is a weighted average value between those of unbound and

bound vacancies, that is, E=(1–α)Em+αEc where α is a strengthening factor,

Ec=Em+γB, is the activation energy for migration of vacancy-solute complexes and γ
is a material constant depending upon the solute. These expressions lead to:

E=Em+δB (8)

where δ =αγ. Although E can vary in the course of the reaction, we are here interested

in its value at the reacted fraction corresponding to Tp. So α is presently representa-

tive of the contribution of bound to total vacancy concentrations at Tp. If theoretically

all defect transport would occur by bound vacancies, which is not the case [61], α=1,

on the contrary for monovacancy transport only, α=0. The value of α is constant

along the DSC run when E is, too. Besides it is worth noticing that Ec is a mean quan-

tity since it is well known that the mobility of solute-vacancy pairs depends on the

frequency of vacancy jumps around the solute atom as well as on the frequency of

solute-vacancy exchanges. There is not therefore a unique activation energy in gen-

eral.

In order to assess α and γ we introduce previously the effective rate constant for

the return of SRO to equilibrium. For a simultaneous unbound and bound vacancy

mechanisms it can be stated as:

kt = νucu+νbcb (9)

where νu and νb are the jump frequencies of unbound and bound vacancies. With the

definition [61]:

νt(cu+cb) = νucu+νbcb (10)

The idea contained in Eq. (3) is that the entire population of vacancies, unbound

and bound, is assigned one effective jump frequency, νt, which is obtained as a

weighted sum of simpler jump frequencies describing individual processes.

From Eqs (3), (4) and (10) one has:

νt = νu(1–Ψb(T))+νbΨb(T) (11)

The jump frequencies are given by:
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being Em the migration activation energy for unbound vacancies. The attempt fre-

quency νom is considered to be the same for unbound and bound vacancies [61].

Therefore the effective attempt frequency can be safely taken also as νom as stated be-

fore. Its value is given by νom =12 ν0 exp (∆Sm/R) for f.c.c. alloys, where ν0 is the

Debye frequency and ∆Sm the activation entropy for free vacancies [45]. Thus:
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Substitution of Eqs (12), (13) and (14) in Eq. (11) yields:
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Values for δ and Tp will be obtained from curves as shown latter on, hence an av-
erage value for γ can be readily calculated.

Effective defect decay kinetics

It is here considered that sink strengths of bound and unbound vacancies are equal, and
that the total vacancy supersaturation follows a first like order kinetic path, as expected
from its elimination at fixed sinks [62]. Also it is assumed that equilibrium at the end of
the DSC trace at Tf is attained, at which the total vacancy concentration ct(Tf)=0, since
ct(Tz)>>ct(Tf). Furthermore, the present analysis considers implicitly vacancy-solute
complexes production and dissolution during the run since, as it will be justified latter on,
a state of dynamical equilibrium prevails in the alloy during the heating process. It should
be noticed that an explicit formulation for complexes production and dissociation is diffi-
cult to accomplish mathematically in no sufficiently diluted alloys, since it involves the
solution of coupled differential equations containing no simple rate constants. This com-
plex topic will be considered in a next paper, so the computed kinetic path here is a some-
what simplified one. Nevertheless, it gives enough insight of the main variations with
temperature of all parameters involved during the heating DSC experiment. Therefore,
using the effective vacancy jump frequency νt, defect supersaturation defined as
S=(ct(T)–ct

eq
)/(ct(Tz)–ct

eq
), decays according to:

d

d r

S

T
= −kS

φ
(16)

being ct

eq
the total equilibrium defect concentration, φr the heating rate and k=νtρt, the

rate constant, ρt is the effective sink density. For a one stage ordering process, as dis-
played under the present experimental conditions, the approximation ct

eq
=0 holds in

principle. On the other hand, ρt is given by:
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ρt = ρd+ρg (17)

where ρd, the sink density for dislocations can be obtained from:
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in which rs is the average distance between dislocations, rc is the capture radius of a

dislocation, δ is the dislocation density and b the atom jump distance. For grain

boundaries, the sink density ρg is given by:

ρ λ
g =

L2
(19)

where λ=a0

2 /12 for f.c.c. metals, a0 is the lattice parameter and L the grain size. Using

the definition of S given before and considering roughly as a first approximation that

ct

eq
=0, integration of Eq. (16) yields:
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or:

ct(T)=ct(Tz)exp[–(ρd+ρg)νomθ(E,T)] (21)

where θ, the reduced time is given by [63–65]:
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It is immediately evident from Eq. (21) that the total defect concentration does
not obey a simple Arrhenius equation even though the decay curve, which must be
solved numerically is purely exponential.

It should be stressed that during the DSC run, as considered before, ct(T), cu(T) and
cb(T) are in dynamical equilibrium between them at states characteristic of temperatures
higher than T, the temperature at which the alloy is. These states vary steadily from their
initial values at Tz. Such consideration stems from the fact that if during quenching dy-
namical equilibrium between defects is attained [57], the more so when heating during
the DSC run because the heating rate is orders of magnitude lower than the quench rate.
Therefore defect decay rates should permanently adjust through the transfer function
Ψb(T) to maintain equilibrium between cu, cb and ct. Furthermore, it has been demon-
strated [47] that the formation of vacancy–solute pairs occurs on the quick time scale for
vacancy relaxations, and for most purposes the numbers of vacancy–solute pairs can be
assumed to be in equilibrium with the state of chemical order in the alloy. Henceforth, the
decay kinetics of total amount of vacancies follows the relationship:

cb(T) = Ψb(T)ct(T) (23)
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and

cu(T) = [1–Ψb(T)]ct(T) (24)

It should be kept in mind that these equations and also Eq. (21) give approximate

determinations, since in its derivation the composite quantity νt is involved, which is

an effective jump frequency. Decay defect curves will be shown latter on in section

concerning numerical results.

Effective non-isothermal short-range-ordering kinetics

As long as the ordering process can be described by a first-order kinetic law, as can be

done for most binary alloy system [66], the differential equation for the transformed

fraction y, under a linear rate becomes:
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where kt=νt ct is the rate constant. Integration yields:
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Since:

νtct = νuct(1–Ψb(T))+νbctΨb (T) (27)

hence Eq. (25) becomes:

y = 1–IuIb (28)
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The mathematics of Eq. (28) is not transparent and it must be solved numerically.

In the following, we will apply these simplified analyses here developed to eval-

uate by means of DSC the defect and ordering kinetics in a high rate quenched cop-

per-zinc solid solution from different temperatures, in which equilibrium SRO is

reached in one stage during a DSC experiment.
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Numerical application concerning Cu–5 at % Zn

The alloy studied contained, 5.1 mass% zinc (99.97 mass%). It was prepared in a

Baltzer VSG 10 vacuum induction furnace from electrolytic copper (99.95 mass%) in

a graphite crucible. The ingot was subsequently forged at 923 K to a thickness of

10 mm, pickled with a solution of nitric acid (15% in distilled water) to remove sur-

face oxide, annealed in a vacuum furnace at 1123 K for 36 h to achieve complete ho-

mogeneity, and cooled in the furnace to room temperature. It was then cold-rolled to

1.5 mm thickness with intermediate annealing periods at 923 K for one hour. After

the last anneal, the material was finally rolled to 0.75 mm thickness (50% reduction).

Subsequent heat treatments were performed at different temperatures for one h,

followed by quenching in a high rate quenching device developed in our laboratory.

The quench time was measured with an oscilloscope and estimated in 200 ms. Such

high quench rates were used in order to promote a one stage ordering process via an

excess of free and bound vacancies from all selected quenching temperatures. That is,

by minimizing defect losses during the quench, sufficient defects in excess are avail-

able to reach and equilibrium state of short-range-order. Otherwise, reordering in-

volves two-stage processes, the first assisted by excess defects and the second by

equilibrium defects [41, 42]. A one stage process facilitates the separation of the

rolles of unbound and bound vacancies.

Microcalorimetric analysis of the samples was performed in a DuPont 2000

thermal analyser. Specimen discs of 0.75 mm thickness and 6 mm diameter were pre-

pared. Differential scanning calorimetric measurements of the heat flow were made

by operating the calorimeter in the constant heating mode (heating rates of 0.83, 0.33,

0.17, 0.083 and 0.033 K s–1). Runs were made from room temperature to 740 K. To

increase the sensitivity of the measurements, a high purity, well-annealed copper

disc, in which no thermal events occur over the range of temperatures scanned, was

used as a reference. In order to minimize oxidation, dried argon (0.8⋅10–4 m3 min–1)

was passed through the calorimeter.

DSC curves and the role of solute-vacancy complexes in the ordering process

Typical DSC curves for the alloy under study at the indicated quenching temperatures are

shown in the differential heat capacity ∆Cp vs. temperature (T) curves at a heating rate

φr=0.33 K s–1 in Fig. 1. They are characterized by one exothermic peak, namely stage 1

and one endothermic peak, stage 2. Stage 1 has been reported in the literature in connec-

tion with short-range order development assisted by excess defects, while stage 2 has

been associated with a disordering process [44, 45]. It can be observed that in the present

type of experiments (high quench rates), all stages shift to higher temperatures as the

quenching temperature decreases. Stage 1 and 2 shifting, will be associated with the rela-

tive increasing importance of solute-vacancy complexes as quenching temperature is

lowered. The enthalpimetric features of these curves will be considered in a next work, as

they are not be involved within the scope of the models here developed.
In order to support the evidence that solute-vacancy complexes play an impor-

tant role in the reordering process, the characteristic parameters of these curves,
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namely overall apparent activation energy (E), peak temperature (Tp) and the factor
δ=(E–Em)/B according to Eq. (8), were determined for the different quenching tem-
peratures (Tq) employed. Activation energies were calculated at reacted fractions cor-
responding to Tp according to Kissinger method [60]. The corresponding curves are
not included for brevity sake. It should be noticed that, although based in a different
mathematical formalism, effective energy values resulted similar to those adjusted
with the previous treatment [53]. This might stem from the fact that the
pre-exponential factor of the Arrhenius constant k0, approaches the mean value of
ct(T)νot in the temperature interval (Te, Tf). All above data are summarized in Table 1.

With the values of E, Tp and the heating rate φr, the total defect concentration ct(Tz)
at actual freezing temperature after quenching can be determined from Eq. (1) taking
νot=νom=4.3⋅1014 s–1 [44]. As can be seen, this computation is made on the basis of the ex-
perimental reordering DSC traces. The contribution of bound and unbound vacancy con-
centrations at peak initiation (Ti) can be readily calculated by means of Eqs (5) and (6),
previous computation of the equilibrium transfer function Ψb(Tz) at actual freezing tem-
perature. The calculated freezing temperature Tz

' is determined from Eq. (7). Cooling
rates were calculated as φq=(Tq –To)/tq, where the quench temperature is T0=273 K. A
quench time tq=200 ms was estimated as stated earlier. Also as mentioned before, when
Tq< ′Tz for determined quenching conditions Tq prevails, that is the actual freezing temper-
ature Tz=Tq and all defects in equilibrium at Tq are quenched-in. On the contrary if Tq> ′Tz ,
Tz= ′Tz , that is, the actual freezing temperature is equal to the calculated one. This condi-
tions are illustrated in Fig. 2. The quenched-in defect concentrations ct(Tz), cu(Tz) and
cb(Tz) as a function of the quenching temperature are shown in Fig. 3. They will be used
as boundary values in defect and SRO kinetic evaluations. As expected, quenched-in de-
fects, bound or unbound, increase with quenching temperature.

Table 1 Quench and peak temperatures, effective activation energies and factor δ at Tp for
Cu–5 at.% Zn

Tq/K Tp/K E/kJ mol–1 δ

773 433 85.0±0.7 0.28

823 425 84.7±0.7 0.26

873 419 84.3±0.7 0.24

923 414 83.9±0.6 0.21

973 409 83.5±0.6 0.19

1023 405 83.1±0.6 0.16

1073 401 82.5±0.6 0.12

1123 398 81.8±0.6 0.09

In Fig. 4, the ratio (cb/cu)Tz
vs. Tq is plotted. The main result obtained in this plot

lies in the fact that such ratio increases with decreasing quenching temperature, that
is, bound vacancies becomes more important relative to unbound ones, in good corre-
lation with the increasing values of overall activation energy with decreasing Tq val-
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ues. Such correlation migth be indicative that the observed increase in overall activa-
tion energy is attributable to the presence of a larger amount of less mobile bound va-
cancies during the ordering process. As stated before, both defect types are in equilib-
rium between them during the whole DSC run.

Such findings deserve to assess the activation energy for migration of bound va-
cancies, Ec=Em+γB. The factor γ was calculated from Eq. (15). Values for δ at Tp are
taken from Table 1. After computations, an average value γ=0.57±0.02 was obtained.
Activation energy for unbound vacancies was obtained by extrapolation of values
previously calculated in [44]. An improved value of B=16.0 kJ mol–1 was computed
after accurate iteration of Eq. (6) of [44]. Hence, for bound vacancies:

Ec= 89.12±0.32 kJ mol–1

thus confirming the lower mobility of bounded vacancies as compared with:

Em= 80 kJ mol–1
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Fig. 3 Bound (cb), unbound (cu) and total vacancy concentration at freezing tempera-
ture as a function of the quenching temperature

Fig. 4 Ratio of bound to unbound vacancy concentration at freezing temperature as a
funcion of quenching temperature



for unbound vacancies. Knowledge of γ, which is quite insensitive to temperature
variations round Tp, allows to determine readily the strengthening factor for bounded
vacancies, α.

A plot of α and E vs. Tp, at which ordering is taking place as its maximum rate, is
in perfect agreement with previous results as shown in Fig. 5. Evenmore, a linear de-
pendence between (cb/cu)Tp

and α is observed in Fig. 6 for low quenching tempera-
tures. Such dependence breaks down as this ratio decreases when Tq becomes higher.
The range covered by (cb/cu)Tp

in the linear part of the plot is lower than the one cov-
ered by α, leading to the conclusion that α is very sensitive to small variations of this
ratio for the lower quenching temperatures. All above findings demonstrate unequiv-
ocally that bound vacancies play an important role in the features displayed by the
curves, basically in the increase of E with decreasing Tq values.
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Fig. 5 Parameter α and effective activation energy (E) as a function of DSC trace peak
temperature (Tp)

Fig. 6 Ratio of bound to unbound vacancies as a function of parameter α at peak tem-
perature (Tp)



Defect annihilation and orderig kinetics

Before computing defect decay curves according to Eqs (21–24), dislocation sink
density for dislocations and grain boundaries must be estimated. For a typical an-
nealed material the dislocation density is δ=107 cm–2 [43]. For this value the term
2πb2/ln(rs/rc) of Eq. (18), which is relatively insensitive to the dislocation density for
annealed alloys was 4.4⋅10–16 cm2 and hence ρd=4.4⋅10–9. The measured grain size
was L=100 µm, a0=0.36 nm and λ=1.1⋅10–16 cm2, thus from Eq. (19) ρg=1.1⋅10–12,
which is negligible compared with ρd for the above grain size. Initial boundary values
for ct(Tz), cb(Tz) and cu(Tz) were obtained for the chosen quenching temperatures from
Fig. 3 and E values were taken for such temperatures from Table 1. Decay defect
curves for Tq=873 K and Tq=1123 K are shown in Fig. 7 at a heating rate of 0.33 K s–1.
Superimposed to these curves are the experimental reacted fractions obtained from
the corresponding curves as y=at/A, where at is the area under the peak to temperature
T and A is the total area of the peak. For reaching correspondence between decay and
y curves the range Te–Tf, the adjusting parameter taken was Em. The best fit in this
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Fig. 7 Bound, unbound and total vacancy concentration decay curves during a DSC run
at φr=0.33 K s–1 after quenching from the indicated temperatures. The experi-
mental SRO reacted fractions are also shown

Fig. 8 Experimental (y) and model based (ym) SRO reacted fractions during a DSC run
at φr =0.33 K s–1 in samples quenched from the indicated temperatures



range was achieved with Em≈77.5 kJ mol–1 for both quench temperatures, which is
very satisfactory on evaluation of the defect decay model here developed.

In Fig. 8 the experimental and theoretical reacted fractions for reordering are

compared for the same quenching temperatures and heating rate as employed in

Fig. 7. The best fit was obtained in both cases for Em=76 kJ mol–1 which is still fairly

good if compared with previous determined value Em=80 kJ mol–1.

Conclusions

The present study leads to the conclusion that the relative importance of solute-vacancy

complexes can be quantified by a simple model which predict defect decay and ordering

kinetics of quenched alloys during non-isothermal conditions. Comparison of the model

based kinetic paths with the experimental ones shows fair good consistency in Cu–5 at.%

Zn. Also an expression to calculate the activation energy for migration of bound vacan-

cies was determined making use of DSC data, giving a quite reasonable value for above

alloy. The contribution of bound and unbound vacancies to the partition of effective acti-

vation energy was also assessed. The relative contribution of bound vacancies becomes

more important as quenching temperature decreases.
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